
1

Visualizing Robot Behavior with
Self-Generated Storyboards

Akkarit Sangpetch

Advisor: Professor David S. Touretzky

Senior Research Thesis
School of Computer Science, Carnegie Mellon University

May 10, 2005

Abstract
Achieving intelligent behavior on a mobile robot requires a mix of sensory processing, navigation,
object manipulation, and human-robot interaction. Behavioral routines are often programmed as a
collection of finite state machines, with states corresponding to actions, and state transitions
triggered by asynchronous sensory events or timer expirations. Debugging these complex real-
time behaviors or making them intelligible to a human observer can be challenging. Development
of GUI tools can help programmers simplify this process.

In this project, we develop a graphical "storyboard" representation for visualizing a robot's
behavior over time. Such a representation has uses beyond debugging. It can be used to make a
robot's behavior comprehensible to its users. And it can provide a visual record of the robot's
"performance" on a task, suitable for publication or display. The tool allows user to manipulate
state machine diagram and automatically generate a storyboard view, based on layout of the state
machine, from robot's execution traces. The tool is implemented in Java on a PC, and
communicates with a Sony AIBO robot dog running the Tekkotsu application development
framework developed at Carnegie Mellon.

2

Contents

Abstract ... 1
1. Introduction... 3

Problem description .. 3
My Approach .. 3

2. State machine visualization.. 4
Defining state machine using Tekkotsu Framework .. 4
Transport protocol... 6

3. Self-generated storyboard.. 8
Transport protocol... 8
What a storyboard looks like .. 9
Storyboard layout.. 10

State nodes .. 10
Transitions... 10
Cursor.. 11
Variable timeline... 11

Recording events... 11
Custom User Message... 12
System event log ... 12
Capturing images from the AIBO or a webcam ... 13

4. Evaluation and Future Work... 14
User Testing .. 14
Future Work .. 14

References.. 15

3

1. Introduction
Problem description
Achieving intelligent behavior on a mobile robot requires a mix of sensory processing,
navigation, object manipulation, and human-robot interaction. Behavioral routines are
often programmed as a collection of finite state machines, with states corresponding to
actions, and state transitions triggered by asynchronous sensory events or timer
expirations. Debugging these complex real-time behaviors or making them intelligible to
a human observer can be challenging. Development of GUI tools can help programmers
simplify this process.

My Approach
This research project developed a graphical "story board" representation for visualizing a
robot's behavior over time. Such a representation has uses beyond debugging. It can be
used to make a robot's behavior comprehensible to its users. And it can provide a visual
record of the robot's "performance" on a task, suitable for publication or display. The
tool was implemented in Java as an Eclipse Rich Client Platform[1] on a PC, and
communicates with a Sony AIBO robot dog running the Tekkotsu application
development framework[2][3] developed at Carnegie Mellon.

To use my tool, the programmer first defines a graphical layout for the state machine.
The layout tool connects to the AIBO via wireless Ethernet and downloads the state
machine definition directly. The definition includes names for each node and each
transition. The programmer then selects which nodes and transitions to display, and
specifies their positions, sizes, and colors on the screen using the layout tool.

Once the layout has been defined, two kinds of graphical presentations are possible:

- A "state" display simply highlights those states that are currently active.
(Tekkotsu's state machine framework supports a hierarchical organization and a
fork operator, so multiple states can be activated simultaneously.) As the robot
acts in the world, it switches from one state to another, and the highlighting
changes accordingly.

- The more novel "storyboard display" uses a strip-chart format, with time
increasing along the x axis. Active states are shown as polygons extending in
time; their vertical positioning, color, and height match that of the corresponding
node in the state graph. In addition, sensory events (such as button presses on the
AIBO's body, timer expirations, or object detection events) are indicated by small
icons along the top of the storyboard.

Storyboard creation is semi-automated. State activations are displayed automatically, but
the programmer makes decisions about other kinds of supplementary information to log
to the storyboard, based on what aspects of behavior he or she wishes to illustrate.

4

2. State machine visualization

Defining state machine using Tekkotsu Framework
Tekkotsu supports state machines by providing StateNode and Transition classes, both are
subclasses of Behavior.

A state is activated by calling its DoStart() function. This will in turn call
StateNode::DoStart(), which will call the DoStart() functions of all the Transitions leading
out of that state. Each Transition sets up one or more listeners for various types of events.
If events of the appropriate types are received, the Transition "fires": it deactivates the
source state by calling its DoStop() function, and then activates the destination state by
calling its DoStart() function. Deactivating the source state causes the deactivation of all
its outgoing Transitions (via their DoStop() functions), which causes them to remove their
listeners.

To illustrate the concept, the code below defines a state machine for a simple Bark/Howl
behavior shown in the diagram that follows:

Bark/Howl State Machine
01: #ifndef INCLUDED_SampleBehavior_h_
02: #define INCLUDED_SampleBehavior_h_
03: #include "Behaviors/StateNode.h"
04: #include "Behaviors/Nodes/SoundNode.h"
05: #include "Behaviors/Transitions/CompletionTrans.h"
06: #include "Behaviors/Transitions/EventTrans.h"
07: #include "Behaviors/Transitions/TimeOutTrans.h"
08: #include "Events/EventRouter.h"
09: class SampleBehavior : public StateNode {
10: protected:
11: StateNode *startnode;
12: public:
13: SampleBehavior() : StateNode("SampleBehavior"), startnode(NULL) {}
14: virtual void setup() {
15: StateNode::setup();
16: SoundNode *bark_node = new SoundNode("bark","bark.wav");
17: SoundNode *howl_node = new SoundNode("howl","howl.wav");
18: StateNode *wait_node = new StateNode("wait");
19: addNode(bark_node); addNode(howl_node); addNode(wait_node);
20: EventTrans *btrans = new EventTrans(wait_node,EventBase::buttonEGID,
21: RobotInfo::HeadFrButOffset,EventBase::activateETID);
22: bark_node->addTransition(btrans);
23: bark_node->addTransition(new TimeOutTrans(howl_node,5000));
24: howl_node->addTransition(new CompletionTrans(wait_node));
25: wait_node->addTransition(new TimeOutTrans(bark_node,15000));
26: startnode = bark_node;
27: }
28: virtual void DoStart() {
29: StateNode::DoStart();
30: startnode->DoStart();
31: }
32: virtual void DoStop() {
33: StateNode::DoStop();
34: }
35: };
36: #endif

5

In this example, the state machine starts in state Bark, which has two outgoing transitions.
One sets up a listener for the AIBO head button (EventTrans); the other starts a 5 second
timer (TimeoutTrans). When activated, the Bark state plays a bark sound and then stays
there. If the user presses the head button, the AIBO will transition to state Wait and the
dog will wait for 15 more seconds before going back to the Bark state (and playing
another bark sound.) Otherwise, if the AIBO remains idle for five seconds, the timer will
expire and cause the AIBO to transition to the Howl state and play a howl sound. When
the play finishes, the state will signal completion by throwing a status event, causing the
dog to transition to the Wait state (CompletionTrans).

Tekkotsu’s state machine structure is recursive; any node can contain an entire state
machine within. As in the example above, the behavior is actually described as a state
node named ‘SampleBehavior’ whose setup function instantiated all nodes and transitions
that make up the state machine. Then when SampleBehavior::DoStart() is called, it activates
the state machine’s start node (Bark) and starts the state machine.

Bark
play file
bark.wav

Howl
play file

howl.wav

Wait

Head button
pressed

Finished playing
sound

5 second timer
expires

15 second timer
expires

6

Transport protocol
In order to get the state machine description from the dog, Tekkotsu provides a state
machine spider which will collect information about the specified state machine and
return the state machine model to the client on the PC in XML[5] format.

We use XML to encapsulate the state machine information. The information includes
state node and transition identifiers, which can be specified by the user’s code or
automatically generated from class name by the framework. The content also provides
C++ class names used for implementation of each state and transition. Each transition tag
provides source and destination identifiers of state nodes. Note that it is possible to have
multi-headed transitions with multiple source/destination nodes.

For example, our sample machine is represented with the following XML document:

<model>
 <state id="Bark" class="SoundNode" />
 <state id="Howl" class="SoundNode" />
 <state id="Wait" class="StateNode" />
 <transition id="btrans" class="EventTrans">
 <source>Bark</source>
 <destination>Wait</destination>
 </transition>
 <transition id="timeout5" class="TimeOutTrans">
 <source>Bark</source>
 <destination>Howl</destination>
 </transition>
 <transition id="timeout15" class="TimeOutTrans">
 <source>Wait</source>
 <destination>Bark</destination>
 </transition>
 <transition id="complete" class="CompletionTrans">
 <source>Howl</source>
 <destination>Wait</destination>
 </transition>
</model>

The complete document type definition is defined as follow:

<!DOCTYPE model [
 <!ELEMENT model (state*, transition*)> // State machine description
 <!ELEMENT state (state*, transition*)> // State node description
 <!ELEMENT transition (source+, dest+)> // State transition description
 <!ELEMENT source (#PCDATA)> // Source node identifier
 <!ELEMENT destination (#PCDATA)> // Destination node identifier
 <!ATTLIST state id CDATA #REQUIRED> // State node identifier
 <!ATTLIST state class CDATA #REQUIRED> // State node C++ class name
 <!ATTLIST transition id CDATA #REQUIRED> // Transition identifier
 <!ATTLIST transition class CDATA #REQUIRED> // Transition C++ class name
]>

The retrieved information about the state machine model will be saved along with an
automatically generated layout of the state machine. The user will be able to use the
layout editor to further modify the layout and save it for future sessions.

7

State machine layout editor
A special state machine layout editor was implemented as part of this project. We use
Eclipse’s Graphical Editor Framework[4] to facilitate the development of this editor.
In order to use the layout editor, the user provides the hostname (or IP) of the AIBO, the
spider server port and the name of the state machine. The client will request the state
machine description from the AIBO and generate a simple layout by putting all state the
state nodes in a circle and connecting all applicable transitions.

The user will then be able to manipulate the layout by moving or changing state nodes’
shapes, sizes, colors and labels to suit their taste.

Once the layout has been defined, the user can save the layout and will be able to use it
for monitoring sessions.

8

3. Self-generated storyboard

Transport protocol
The Tekkotsu framework also supports real-time event monitoring. The spider server on
the dog can listen to various state machine events and generate event logs to the graphical
client. The supported events are:

- State machine events: activation/deactivation/transition
- User-defined events: user can modify the state machine code to display custom

message on the storyboard.
- System events: sensory events including button push, audio, vision sensor.
- Image events: taking image from AIBO camera or PC’s webcam

We also use XML to encapsulate event logging, the document model is provided below:

<!DOCTYPE event [

<!ELEMENT event (#PCDATA|#CDATA|param*|(statestart|statestop|fire)*)> //general event tag
<!ELEMENT statestart (EMPTY)> // state machine activation
<!ELEMENT statestop (EMPTY)> // state machine deactivation
<!ELEMENT fire (EMPTY)> // a transition is fired
<!ELEMENT param (EMPTY)> // additional parameters

<!ATTLIST event type (transition|log|userlog|image|webcam) #REQUIRED> //type of events
<!ATTLIST event egid CDATA #IMPLIED> // generator id (Tekkotsu)
<!ATTLIST event sid CDATA #REQUIRED> // source id (Tekkotsu)
<!ATTLIST event etid (A|D|S) #IMPLIED> // type id:Activate/Deactivate/Status
<!ATTLIST event time CDATA #REQUIRED> // log time
<!ATTLIST event voff CDATA #IMPLIED> // vertical offset relative to state node
<!ATTLIST event format CDATA #IMPLIED> // image format

<!ATTLIST param name CDATA #REQUIRED> // additional parameter name
<!ATTLIST param value CDATA #REQUIRED> // additional parameter value

<!ATTLIST fire id CDATA #REQUIRED> // transition id
<!ATTLIST fire time CDATA #REQUIRED> // time at which the transition is fired
<!ATTLIST statestart id CDATA #REQUIRED> // activated state node id
<!ATTLIST statestart time CDATA #REQUIRED> // state node activation time
<!ATTLIST statestop id CDATA #REQUIRED> // deactivated state node id
<!ATTLIST statestop time CDATA #REQUIRED> // state node deactivation time

]>

9

What a storyboard looks like
The storyboard is displayed as a continuous timeline indicating state
activation/deactivation. The appearance of the state nodes in storyboard is derived from
the state machine layout including vertical position, color and label of each state node.
The transition is displayed as a vertical line connecting the source and destination.

The figure above shows a sample monitoring session. The storyboard has a cursor which
indicates the time at which the user wants to inspect. The state nodes/transitions which
activate or deactivate at that time are highlighted in both the storyboard view and the
state machine view. A textual description of the events occurring during that time is
displayed in the runtime property view to the right. A custom user event is displayed as a
little bookmark icon, which will show more information regarding the events if the user
has the mouse pointer hover on the item.

The storyboard display is updated in real-time. After recording the execution trace, the
user can save the current trace for further inspection or later presentation.

10

Storyboard layout

State nodes
The shape, height and vertical offset of state nodes in the storyboard utilize layout
information from the state machine view. Horizontal offset and width of the chart
indicates the node’s activation time and period.

Transitions
Transitions are shown as vertical lines with small dots connecting sources and
destinations. It is possible to have multi-headed transitions with multiple sources and
destinations. In this case, the vertical transition line is stretched to connect all associated
nodes. Sources appear to the left of the transition line; destinations appear to the right.

Vertical
Offset

Node
height

This state machine
contains a multi-
headed transition with
multiple destinations.

This cursor highlights
nearby state nodes and
transitions.

11

Cursor
In the storyboard view, the cursor is shown as a vertical red line stretching through the
storyboard. This cursor indicates the time at which the user wants to inspect. Nearby
nodes and transitions are highlighted and textual descriptions of these objects are shown
in the runtime view panel.

Variable timeline
In order to display nodes with very short activation periods, which often confuse the user,
the scale in the timeline is automatically adjusted to help users visualize these nodes.

Recording events
The tool allows the user to record and monitor other events beside the state machine
related ones. These include user log, system event log, and image transfer from the AIBO.

This node is active for only 0.5
seconds. The timeline is stretched to
display the node’s width as defined
by state machine layout instead.

This custom icon indicates a
custom user message. The
message is shown in runtime
view and available as a tool tip.

This panel shows system event
logs as icons indicating status of
events (deactivate/activate/
periodical update).

12

Custom User Message
The tool generally requires no modification of user code to generate state machine events.
However, users can manually insert a small piece of code into their state machine to
display custom messages such as variable values, or parameters to facilitate the
monitoring process. The user can also specify custom icons to be displayed on the
storyboard by calling the following method:

logThis(“Hello world”, “hello.ico”);

System event log
The tool is also able to display system events as small icons (independent of the state
node) in a system event bar, under the timeline of the storyboard. The user can either
specify interesting events by declaring custom configuration during initialization of the
state machine or use Tekkotsu’s Event Logger tool to determine which events should be
logged onto the storyboard. The supported system events are:
 - Button press and release events
 - Timer events
 - Motion command status
 - Locomotion
 - Audio starts/ends playback
 - Emergency stop
 - System text message

13

Capturing images from the AIBO or a webcam
The user can also insert code into their state machine commanding the AIBO to take a
snapshot from its internal camera and send it to the graphical client. They can also
connect the client PC to an external webcam and have the picture of the AIBO taken at a
specified state using the following method:

logAIBOCam();
logWebCam();

The image will be taken (either from the dog or webcam) and stored on the client
machine. An image thumbnail will be automatically generated and shown on the
storyboard. If the user double-clicks on the thumbnail, the tool will show the full-size
image in a separate window. A preview of the image is also shown in the image preview
panel if the storyboard cursor is located on the thumbnail.

The binary data of images taken are stored as Base64 encoding integrated into XML file
used for general event logging. Users can also extract individual image from event log
file and save as jpeg format.

Recorded image is shown as a
thumbnail in storyboard view.

Currently selected image is also
shown in the preview panel. User
can extract and save individual
image.

14

4. Evaluation and Future Work

User Testing
The tool was used in conjunction with the Tekkotsu framework in a robotics seminar
course at State University of New York at Albany during Spring 2005. I was able to
obtain user feedback regarding the interface and made various changes to the tool. For
example, we include the automatic generation of the storyboard after users download
model. The process assists new users to start the monitoring process without learning
about the layout editor.

Future Work
The storyboard software created by this project will be tested by applying it to behaviors
that other users build for the AIBO, such as a tic-tac-toe player currently under
development. Upon completion, the software will be integrated into the Tekkotsu
development framework, which is in use at a dozen universities around the world.

Various aspects of this project could also be improved. For example:

- The state machine editor could be improved by providing a right click context
menu for users to change certain aspects of the layout.

- However, the storyboard view could benefit from transparency support so that
multiple nodes could be stacked without obscuring the view. This will improve
visualization for hierarchical state machines where it is possible to have a
complete state machine inside a single state node of another machine. The current
graphical library used by the project (Eclipse SWT[6]) does not support
transparency. I attempted to switch to Java 2D graphical library to support
transparency in storyboard view. However, the switch causes severe portability
problems with Mac OS platform.

I also look forward to further improvement based on user feedback after the tool is
publicly released.

15

References

[1] Jeff Gunther, Eclipse’s Rich Client Platform, IBM developerWorks, July 2004.
[2] E.J. Tira-Thompson, “Tekkotsu: A rapid development framework for robotics,”

Master’s thesis, Robotics Institute, Carnegie Mellon University, May 2004.
[3] (2004) Tekkotsu website. [Online]. Available: http://www.tekkotsu.org/
[4] Randy Hudson, Create and Eclipse-based application using the Graphical Editing

Framework, IBM developerWorks, July 2003.
[5] T.Bray, J.Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau,

“Extensible Markup Language (XML) 1.0,” W3C Recommendation, February 2004.
[6] Joe Winchester, “Graphics Context – Quick on the draw,” Eclipse Corner Article,

July 2003.

