
AIBO Camera Stabilization

Tom Stepleton

Ethan Tira-Thompson

16-720, Fall 2003

AIBO vision is bumpy

• Legged locomotion induces vibration.

• Head (camera mount) is a great big cantilevered mass.

Camera problems: the lineup

• Obvious problems due to exposure time/cheap optics:

Lens distortionSmear

Camera problems: the lineup

• Subtle problems due to sample rate:

Skew/bendingStretching

Camera problems: the lineup

• Subtle problems due to sample rate:

Skew/bendingStretching

Goal: Take AIBO from this…

…to this:

SmoooooooothSmooooooooth……

Stabilization Basics

• Compute homographies between successive images in your
sequence.

• Transform sequence images one by one to make a continuous,
smooth stream.

• Problems: error accumulates, especially with more degrees of
freedom (e.g. affine transformations).

• Many papers are about dealing with this.

H

Mosaicing Video Sequences
Netzer, Gotsman

• Suggests using a sliding window of multiple images to
compute more accurate registration of each frame

– We ignore this, too computationally intensive, introduces lag
in images

• Treat each new image as one of translation, rigid,
similarity, affine, or projective transformation. Try each,
pick the one with the lowest error, with some bonus to
“simpler” transformations.

– Instead of trying all 5 on each frame at run time, we did some
trials and found rigid transformations satisfactory.

Camera Stabilization Based on 2.5D Motion
Estimation and Inertial Motion Filtering

Zhu, Xu, Yang, Jin

• Typically, camera movements fall into a few classes of
motion. (e.g. panning, dolly, tracking,…) We can pass
through movement on the dominant dimension and
stabilize on the non-dominant dimension.

– Since our motions are typically constrained to the horizontal
plane, we can compensate for vertical bouncing and rotation,
but leave horizontal motion unchecked.

Our approach

• AIBO vibration is very regular.

• Rotation oscillates around 0°.

• Vertical bouncing oscillates around a fixed value.

• Horizontal bouncing oscillates around a value determined by
AIBO’s turning and sidestepping velocities (which we know!).

So…

It’s a control problem now!

• Over many frames, image motion should tend toward
fixed (or predictable) values.

• Use an “image placement controller” that allows high-
frequency changes in placement, but enforces this
constraint.

• Specifically, we extract and adjust the x,y coordinates and
! rotation used for image registration.

The obligatory flowchart

<< Past Future >>

Image N-1 Image N

Compute H’
for N!N-1

Precomputed H’’
for N-1!1

H = H’’ * H’
(for N!1)

Correct H
for drift Transform and

show Image N

• Q: How do you find corresponding points in Image N and
Image N-1?

• A: Andrew and Ranjith’s RANSAC from Assignment 5.

• Q: Oh.

• A: It’s pretty robust, even to blurry, smeared images.

How to find corresponding points

Why find H indirectly?

• We could simply find the H from Image N to the corrected,
transformed Image N-1, right?

• Wrong-o! The corrected image is jagged, noisy. RANSAC would
freak.

• Instead, first find H’ from Image N to the normal Image N-1.

• Then premultiply it with the accumulated H (H’’) from the normal
Image N-1 to Image 1.

How do we get x, y, and !?

• It’s easy if our “homography” is just a rigid transform.

• It’s easy to adjust them, too.
• A cop out? Perhaps… it doesn’t fix all the aberrations in

the AIBO image. It’s a start, though.

arccotan !

Finding rigid transformations (1 of 2)

• Step 1: Constrained least squares.

The U matrix

P: Image N point
u,v: N+1 point

Finding rigid transformations (2 of 2)

• Step 2: Throw away image scaling.

• Divide a, b, c, d, and e by e, then by the length of [a b].

• Otherwise the image will shrink as you walk forward.

[a/e b/e] is not constrained by
constrained least squares to be

of length 1.

Fighting drift, step by step

• Isolate ! from H

• Apply really simple correction: premultiply H by a rotation matrix
that rotates by -!/constant (forcing it back toward 0).

• Isolate tx and ty from H

• Apply similar correction. We should force ty toward a predicted
value based on turning and sidestepping. We don’t right now,
forcing it to 0 instead.

Demo time!

• Hallway scene
– Normal, stabilized, and side-by-side

• Lab scene
– Normal, stabilized, and side-by-side

Any questions?

