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Abstract: 

 

The Tekkotsu robot programming framework has a collection of interacting modules, 

known as the "Crew", that make it easy to construct complex behaviors.  In this thesis, a 

new member, the Grasper, was developed. The purpose of the Grasper is to control a 

robot‟s arm in order to enable the manipulation of objects. For this research, a simple 

Hand/Eye robot with a three-link planar arm was used. Manipulating objects from one 

position to another using a planar arm involves various kinematics calculations, collision 

detection, and path planning. Kinematics calculations are required to determine the arm 

configurations that will place the arm in a desired position. Collision detection is 

performed to keep the arm from accidentally hitting itself or obstacles in its environment. 

Path planning is required in order to move the arm and an object from point A to B.  The 

path planning algorithm that was used in this research is a randomized algorithm. 

  

Since the hand/eye robot does not have closable fingers, a path planning constraint was 

developed to ensure that the robot does not loose grip of objects while moving them. 

Paths are smoothed to remove jerky and meandering characteristics. Every manipulation 

performed by the Grasper is carefully planned and executed. 

  

 A tic-tac-toe player, which requires the manipulation of game pieces, was developed to 

demonstrate the effectiveness of the Grasper. As a result of this research, Tekkotsu can 

easily manipulate objects with a three-link planar arm with a code segment that consists 

of only a few lines of code. 

 



1 Introduction 

Tekkotsu is an open source robot programming framework developed mainly in C++. 

It is an object-oriented and event passing architecture that makes full use of the template 

and inheritance features of C++. Programmers use high-level primitives, such as “look at 

this object” or “walk to that location”, to control robots. These primitives abstract from 

the low-level concepts of robot programming such as joint angles and motor torques, 

allowing programmers to focus on what they want the robot to do, as opposed to how to 

do it. 

Tekkotsu was initially designed for programming Sony‟s AIBO dogs. Once production 

and support for these dogs ceased it was time for Tekkotsu to find other platforms to 

support. With a very limited number of inexpensive tabletop robots available on the 

market, the developers of Tekkotsu decided to construct their own robots. They created 

the Hand/Eye robot that has a planar arm for manipulating objects.  

Tekkotsu includes a collection of interacting software modules known as the “Crew” 

[1] that provide capabilities that make it easy to construct complex behaviors. The four 

Crew members are the MapBuilder, the Lookout, the Pilot, and the Grasper. The Grasper, 

a software module whose job is to control the robot‟s arm to manipulate objects, is the 

newest Crew member, and its construction is the subject of this thesis. 

In this thesis, the Hand/Eye robot is used to test the design and implementation of the 

Grasper.  The problems and solutions for advancing Tekkotsu‟s ability to manipulate 

objects with the arm are explored. Inverse kinematics calculations are used to determine 

if objects can be manipulated. Manipulation paths are planned using a fast, randomized 

planning algorithm. Collision detection is accomplished using a simple algorithm that 
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detects when two convex shapes are overlapping. Ensuring that objects stay within the 

fingers of the arm‟s hand necessitated the development of the direction of motion 

constraint. A manipulation engine was designed to give developers the ability to express 

desired manipulations as simple requests. A tic-tac-toe player was developed to show that 

the Grasper can effectively manipulate objects with the planar arm, specifically the planar 

arm of the Hand/Eye Robot. 

 

2 The Hand/Eye Robot 

 

Developed in the Tekkotsu Lab at Carnegie Mellon University, the Hand/Eye robot [2] 

is a simple robot made of a web-cam and a planar arm. The web-cam, which is attached 

to a pan-tilt joint assembly, is fastened to the top of an aluminum mast and the arm is 

fastened to the bottom. The mast is about 0.6 meters tall. This configuration allows the 

robot to see all around itself and far beyond the reach of its arm. The web-cam together 

	
 

Figure 1 - Hand/Eye robot 
	

 

Figure 2 - Manipulation surfaces 
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with the vision system built into Tekkotsu give the Hand/Eye robot the ability to detect 

objects in its environment. Both the camera and the arm are connected via USB to the 

developer‟s computer. Figure 1 shows the Hand/Eye robot playing with some plastic egg 

shells. 

The planar arm is a three-link arm, made of three Dynamixel AX-12 servos, two 

aluminum tubes and a c-bracket. The c-bracket is the arm‟s end effector or hand. All three 

joints are rotational. The servos in the arm are arranged so the joints can only move 

parallel to the surface on which the robot is placed, hence the planar arm. Figure 2 shows 

the arm‟s manipulation surfaces, the forearm and upper arm, the wrist, and the interior of 

the c-bracket. The latter is the primary manipulation surface. 

 

The Hand/Eye robot has a three-link arm because manipulation in a plane requires at 

least three degrees of freedom to independently control, the x and y coordinates of the 

end-effector and its orientation. A three-link arm allows the end-effector to be placed in 

infinitely many orientations, allowing infinitely many ways to manipulate an object. 

Manipulation with a two–link planar arm would be inadequate because given the 

coordinates of the end-effector, there are at most two achievable orientations. The first 

image in figure 3 shows the two achievable orientations of the end-effector of a two-link 

arm given the desired end-effector coordinates. Figuring out how to place the end-

	
 

Figure 3 - Illustrations showing a two, three and four link arm respectively 
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effector of a three-link arm in a desired configuration, x and y coordinates and an 

orientation, is a straightforward process that produces at most two solutions. The end-

effector on an arm with four or more links can also be placed in infinitely many 

orientations. However, there may be infinitely many solutions. In addition, the process of 

finding these solutions is much more complex. An arm with four or more links would be 

better to be able to reach around obstacles, but it would also be heavier and more 

expensive, requiring more power and wiring. 

Because the arm does not have closable fingers, it can only push objects; it cannot pull 

them. This simplifies the hardware but complicates the path planning task. A solution to 

this problem is one of the main accomplishments of this thesis. 

 

3 A Touchstone Problem: Playing Tic-Tac-Toe 

A tic-tac-toe player was written to demonstrate the effectiveness of the primitives 

developed in this research. Tic-tac-toe was chosen because it is a simple game to play if 

one can locate the board and the game pieces, and if one can move the pieces onto the 

board. The Hand/Eye can use its pan-tilt web cam and Tekkotsu‟s vision system to locate 

the board and the game pieces. Tekkotsu‟s vision system gives the robot the ability to 

distinguish objects based on their shape and color. The vision system also reports the 

location of the objects in the robots environment. The Hand/Eye can use its planar arm to 

move the game pieces onto the board and to sweep them off the board at the end of the 

game. Moving game pieces onto the board will become progressively harder as the board 

fills up because the arm has to reach around pieces that have already been placed on the 

board, as shown in figure 4.  
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Mirage, a simulation environment that allows a robot to operate in a virtual world, was 

used to test the code developed in this research. The same code that controls a simulated 

Hand/Eye robot in Mirage can also control a real robot. Using Mirage reduced the time 

needed for testing and debugging. 

 

4 Technical Problems To Be Solved 

Moving a game piece from one location to another requires solutions to several 

problems: 

a) Inverse kinematics (IK): find a configuration of the arm (i.e., a set of joint angles) 

that puts the fingers of the c-bracket around the object at its start location. Also 

find a configuration that puts the c-bracket at the destination location. 

b) Collision detection: determine if a given arm configuration will cause a collision 

between some part of the arm and an object or some other part of the arm. 

c) Path planning: finding a sequence of arm configurations that move the c-bracket 

	
 

Figure 4 - Simulated robot reaching around one object to place another 



 

 6 

from a start to a destination location while avoiding collisions with itself or other 

objects. 

d) Constrained path planning: when moving an object, find paths that keep the 

direction of motion of the c-bracket roughly aligned with the direction in which 

the fingers are pointing, so that the object cannot slip out. 

e) Path smoothing: given a randomly generated path to the destination that avoids 

obstacles and obeys the direction of motion constraint, find a shorter, smoother 

path that accomplishes the same result and still obeys all constraints. 

f) Manipulation planning: develop a convention for users to express manipulation 

requests, and an algorithm to translate each request into a sequence of IK and path 

planning problems to be solved. 

The software module that translates user requests into IK and path planning problems, 

solves those problems, and then executes the solution and reports the result is called the 

Grasper. 

In the following sections each of the above problems and their solutions are described 

in more detail. 

 

5 Kinematics Calculations 

Kinematics calculations describe the relationship between the position and orientation 

of the end-effector and the joint angles. There are two types of kinematics, forward or 

direct kinematics and inverse kinematics. Forward kinematics determines the position of 

the end-effector given a set of joint angles and the distances between the joints. This is 

easily solved with a series of matrix multiplications. Forward kinematics problems 
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always have a unique solution. 
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The above equation shows the matrix multiplications for a three-link planar arm. 1, 

2, and 3 represent the shoulder, elbow and wrist angles respectively. L1, L2 and L3 

represent the link lengths between the shoulder and the elbow, the elbow and the wrist, 

and the wrist and the end-effector respectively. 

Inverse kinematics calculations search for a set of joint angles that will produce a 

desired end-effector configuration. They are harder to perform and may produce multiple 

solutions, one solution or none. In this research, the shoulder, elbow and wrist are the 

joints whose angles need to be determined given a desired configuration of the c-bracket. 

Inverse kinematics calculations for a three-link planar arm involve a four-step process 

based on a common analytical approach documented in the book „Robot Modeling and 

Control‟ [3].  

The steps are as follows: 

I. Determine the position of the wrist [xw, yw] given a desired c-bracket 

configuration, a target point [xt, yt] and an orientation t. This is done using the 

following equation:  

xw
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Where L3, shown in figure 5, is the distance from the wrist to the target point [xt, yt]. 
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II. Next, calculate the elbow angle 2 using the previously determined wrist 

position [xw, yw] and the arm dimensions L1 and L2, shown in figures 6 and 8.  

This is done with the following equations: 

D =
xw

2 + yw
2 - L1

2 - L2

2

2L1L2

= cos(a)

q2 = tan-1 ± 1-D2

D

 

If 2 is equivalent to 0 then the elbow is fully extended. When the elbow is not fully 

extended there are two solutions, + 2 and – 2, known as the elbow-up and elbow-

down solutions. See figure 7.  

 

III. Then the shoulder angle, 1 is determined using [xw, yw], L1, L2 and ± 2 with 

	
 

Figure 6 - Elbow angle, 2 
	

 

Figure 7 - Elbow up/down configurations 

	
 

Figure 5 - Wrist position 
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the following equation:  

q1 = tan-1 yw

xw

æ
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÷- tan-1 L2 sin(q2 )
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IV. Finally, the wrist angle, 3 is determined using this equation:  

q3 =ft - (q1 +q2 ) 

Figure 8 shows the wrist position and all the angles that were calculated using the four 

steps described above. 

 

The inverse kinematics calculations described above are intended for an abstract three-

link planar arm. These calculations produce joint angles between +π and -π. However, the 

joints on the Hand/Eye‟s arm cannot turn that far because adjacent links will collide with 

each other. Each configuration is therefore validated to ensure that each angle is within 

the corresponding joint‟s rotation range.  

 

6 Collision Detection 

Since the Hand/Eye cannot feel, it is incapable of detecting a self-collision or a 

collision with an object. A self-collision can occur if the arm is turned too far inwards. If 

this happens the third link could collide with the first link. The second and third links 

	
 

Figure 8 – Entire arm and the variables 



 

 10 

could collide with the aluminum mast also. A collision with an object, such as a game 

piece, could occur as the arm moves around. Figures 9 and 10 illustrate these situations. 

To avoid these collisions, collision detection must be performed. 

 

 

The algorithm used for collision detection in this research is based on the Separating 

Axis Theorem. This theorem states that given two 2D convex shapes lying in a plane 

there exists a line onto which their projections will be separate if and only if the shapes 

are not intersecting [4], see figure 11. For this algorithm, the arm links are modeled as 

rectangles. The c-bracket is modeled as three rectangles, as part of the third link. All the 

	
 

Figure 10 - Second link colliding with a game piece 

 

Figure 9 - Third link colliding with first link 

	
 

Figure 11 - Separating Axis Theorem 
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objects in the robot‟s configuration space are also modeled, either as rectangles or 

spheres, depending on what the object looks like. See figure 12. 

 

For each configuration, the arm-link rectangles are rotated and translated using the 

joint values, forward kinematics, and geometry to determine what position each rectangle 

should be in. The positions of the shapes representing the objects are determined by the 

position of each object. Once the position of each shape has been determined, each arm-

link rectangle is compared to each object shape (either rectangle or sphere). The rectangle 

representing the first link is also compared to each of the rectangles representing the third 

link. If at least one of the comparisons determines that the shapes are intersecting, then 

the configuration will cause a collision. 

 

7 Path Planning Using RRT-Connect 

Path planning is accomplished with a randomized planning algorithm called RRT-

Connect [5]. RRT-Connect uses Rapidly-exploring Random Trees (RRTs) and a greedy 

algorithm that tries to connect two RRTs, one beginning from a start configuration and 

the other from an end configuration. 

	
 

Figure 12 - Arm and object modeled as rectangles 
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Figure 13 shows a single RRT, which is a tree data structure whose vertices encode 

configurations of the arm. RRTs grow by iteratively extending themselves towards a 

randomly generated configuration, qrand. Picking a random number within the joint 

rotation range for each joint generates a random arm configuration. After generating qrand, 

a search is performed on the tree to find the vertex that is nearest to the random 

configuration. Once the nearest vertex, qnear, has been found, the tree is extended from 

qnear towards qrand. This is done by creating a new configuration, qnew, which is some fixed 

incremental distance, , from qnear in the direction of qrand; see figure 14. If qrand is already 

within  of qnear, it is now considered to be qnew. qnew is then tested for a collision. qnew is 

added to the tree as a child vertex of qnear as long as it is collision free. If qnew is not 

collision free it does not get added to the tree, hence the tree does not get extended during 

this iteration. 

 
Figure 13 – A single RRT structure 
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The RRT-Connect algorithm alternately extends each RRT and biases their growth by 

also extending the trees towards each other. When extending a tree towards qrand, the 

RRT-Connect algorithm will continue to extend qnear towards qrand until it either reaches 

qrand or until it cannot be extended any further. After extending one tree, the other tree is 

extended as far as possible towards the previous tree‟s qnew. This is how the trees are 

biased to grow towards each other. If a tree is extended all the way to the previous tree‟s 

qnew then the trees have connected, otherwise they are swapped. Once the trees have 

connected backtracking is used to extract a path from the trees, starting from the vertices 

that connected as shown in figure 15. 

 

 

 
Figure 14 – Extending a tree towards qrand [5] 

	
 

Figure 15 - An extracted path 
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8 Path Planning With A Direction of Motion Constraint 

The Hand/Eye does not have closeable fingers, so it cannot hold on to anything. The 

only way it can move objects is by pushing them. This means the fingers must be 

pointing roughly in the same direction that the object is being moved, or the object will 

pop out of the hand. To ensure that contact is not lost, the c-bracket predicate was 

developed. The predicate compares the direction of motion between two consecutive 

configurations to the direction in which the fingers of the preceding configuration are 

pointing. As long as these directions are within a given range of each other, the object 

will stay in the c-bracket. 

Figure 16 shows a configuration that will cause the c-bracket to move in an 

appropriate direction. The red dot is where the center of the c-bracket will be should the 

c-bracket be moved to the red configuration. Not only is the direction of motion from the 

green to the red configuration appropriate, it is also within the allowed range of motion, 

the green triangle. 

    

Figure 17 shows a situation where the subsequent configuration, the red configuration, 

 
Figure 17 – Inappropriate direction of motion 

 
 

Figure 16 – Appropriate direction of motion 
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will cause the c-bracket to move in an inappropriate direction. If the c-bracket were 

moved from the green configuration to the red configuration, the c-bracket will lose its 

grasp of the object.  

The c-bracket predicate algorithm proceeds as follows: 

i. Determine pfrom, pto and pgoal, the center positions of the c-bracket, given qfrom, qto 

and qgoal respectively. qfrom and qto are the two consecutive configurations. qgoal is 

the configuration a tree is being extended to. 

ii. Determine the c-bracket orientations ofrom and oto for qfrom and qto. 

iii. Determine the direction of motion dir, from pfrom to pto. 

dir = atan2(pto – pfrom) 

iv. Determine the angular distance angDist, between ofrom and dir. 

v. If angDist is greater than the maxRange (the maximum allowed range of motion 

between two configurations) a new qto is generated.  

qto = CreateNewQ(qfrom, qgoal) 

For the c-bracket on the Hand/Eye, the maxRange is set to 40°. 

vi. If qto is not valid or not collision free, return false, otherwise proceed to the next 

step 

vii. Add qto as a child vertex of qfrom. Return true if qto is closer to qgoal than qfrom. 

Figures 18 and 19 illustrate what the CreateNewQ function in step v does. Assume, in 

figures 18 and 19, that the green, blue-outlined and red-outlined configurations are qfrom, 

qgoal and qto respectively. Where qfrom is the configuration that the c-bracket is being 

extended from and qgoal is the configuration that the c-bracket is being extended to. Qto, in 

figure 18 is the proposed step (some fixed incremental distance ) in the direction of qgoal 
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from qfrom. The red circle within the fingers of qto in figure 18 marks the center of the c-

bracket. Since moving the c-bracket from qfrom to qto in figure 18 will cause an 

inappropriate movement the CreateNewQ algorithm will generate a new qto that is 

centered in the same position as qfrom. However, the new qto will be rotated 5° about its 

center in the direction of qgoal, as can be seen in figure 19. The red-outlined configuration 

in figure 19 is the new qto that is generated.  

During the next extend iteration qto now becomes qfrom. Repeated attempts to move the 

c-bracket to qgoal will cause the c-bracket to appear to rotate about the object. 

               

Generating a new qto with the CreateNewQ function improved the performance of the 

path planning process drastically. 

 

9 Path Smoothing 

Paths produced by the path planner are often jerky and meandering. This is a result of 

 

Figure 18 – Proposed qto configuration 

 

Figure 19 – New qto configuration 
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the random component of the planning algorithm. A smoothing algorithm is applied to the 

path to make it a bit more natural and fluid. Smoothing is accomplished by selecting 

random segments of the path to be substituted. The segments are substituted with a more 

smooth and often shorter segment after the new segment has been determined to be 

collision free. 

A new segment, Snew, is created by extending the first configuration of the randomly 

selected segment, Srand, directly towards the last configuration of Srand. This is 

accomplished the same way the RRT-Connect algorithm extends a tree‟s qnear towards 

qrand. If Snew is successfully created, the entire segment Srand is replaced with Snew. This 

process is repeated 2N times, where N is the number of configurations in the original 

path. 

 

 

	
 

Figure 20 - Path produced by planner prior to smoothing 

 

Figure 21 – A smoothed path 
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Figures 20 and 21 illustrate the effect the smoothing algorithm has on a path. Figure 

20 shows a path that was produced by the planner before smoothing. One can see how the 

c-bracket appears to stick out near the red square, an obstacle. The c-bracket appears to 

stick out again after passing the obstacle as the arm makes its way from the green to the 

red configuration. Figure 21 shows a shorter, more fluid path that was created after 

applying the smoothing algorithm to the path in figure 20. 

 

10 Manipulation Planning and the Grasper 

Moving an object with the Hand/Eye‟s arm is a complex process that involves 6 major 

steps: 

 Finding grasping configurations that put the fingers around the object without 

collisions 

 Planning a path from the current arm configuration to a grasping configuration 

 Finding destination configurations with the fingers around the object at the 

desired destination 

 Planning a path to move the object from a grasping configuration to a destination 

configuration while obeying the direction of motion constraint 

 Planning a path to move the arm from the destination configuration to the 

disengaged configuration 

 Executing the manipulation sequence 

These are the steps that the Grasper uses to solve manipulation requests. A user 

submits a manipulation request by supplying the necessary information about the 

intended manipulation. The user submits information such as what object is to be moved, 
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what obstacles are present in the robot‟s environment, where the object should be moved 

to, and whether the arm is to be moved away from the object once the object has been 

moved to its destination. Once the request is submitted, it is validated to ensure that all 

the necessary information is present. For instance, the Grasper verifies that the user has 

indicated which object is to be moved if a request to move an object is submitted. 

(Several other types of requests are possible.) The Grasper then follows the above-

mentioned steps to try to develop a result. 

I. Finding a grasp configuration 

Given the position of the object, the Grasper will try to determine some valid 

configurations that will place the arm‟s fingers around the object. It does so by 

sampling numerous c-bracket configurations, starting with  

[xt, yt] = [xobj, yobj] and t = 0˚ 

Where [xobj, yobj] are the center coordinates of the object. The Grasper uses inverse 

kinematics calculations to determine the arm configurations for the desired c-bracket 

configuration. If valid configurations are found, they are stored and the next c-bracket 

configuration is sampled. The next c-bracket configuration to be sampled is  

[xt, yt] = [xobj, yobj] and t‟ = t + 5˚ 

 
	

 

Figure 22 – A valid (green) and invalid (red) sample configuration 
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This sampling process continues until the c-bracket has completed a full circle 

around the object. If no valid configurations are found then the object cannot be 

reached and hence cannot be moved.  

Figure 22 shows two arm configurations for two sampled c-bracket configurations. 

The red configuration is invalid because it would cause the c-bracket to collide with 

the upper arm. 

II. Planning a grasp path 

 

If, in step I, at least one valid grasping configuration is calculated, the Grasper will 

attempt to plan a path to grasp the object (i.e. place the fingers around the object). The 

Grasper uses the RRT-Connect algorithm, without the direction of motion constraint, 

to plan the path. The planner does not use the direction of motion constraint because 

it will not be moving an object during this part of the manipulation. One tree, Ts, is 

grown from the arm‟s current configuration, while the other tree, Te, is grown from 

the configurations calculated in Step I. The first few nodes of Te are comprised of the 

configurations from step I. Each configuration verified to be collision free is added to 

Te as a child of the root of Te. It doesn‟t matter which of these configurations is 

reached; they are assumed to be equally good. The root node is arbitrarily made to be 

              
 

Figure 23 – Initial nodes in Te 
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a copy of the first collision free configuration. Assume the three c-bracket 

configurations in figure 23 are three valid sampled configurations from step I and the 

green configuration is the first to be sampled. Then a copy of the green configuration 

is made the temporary root node of Te. 

If a path is found, the temporary root node of Te, the copy of the green node, is 

removed. This is done because the temporary root node and its successful child may 

be far apart and moving the arm from the child to the root may cause a collision.  

 

Figure 24 shows a temporary root node, the green configuration, and one of its 

children, the red configuration. If the arm were moved from the red configuration to 

the green configuration, the arm would collide with the obstacle in between them. 

III. Finding destination configurations 

This step is similar to step I. However, instead of using the coordinates of the 

object to generate configurations to populate Te, the coordinates of the objects‟ 

desired destination are used.  

[xt, yt] = [xdest, ydest] and t = 0˚ 

If no valid configurations are found then the desired destination cannot be reached, 

 
Figure 24 – A temporary root node (green) and a child node (red) 



 

 22 

hence the object cannot be moved. 

IV. Planning a move path 

If at least one configuration is generated in step III, the Gasper will proceed to plan 

a move path. The move paths‟ end tree, Te, is setup much like the grasp paths‟ Te, 

except the configurations used are those calculated in step III. In this step however, 

the start tree, Ts, is grown from the last configuration of the grasp path as opposed to 

the arm‟s current configuration. The Grasper uses the direction of motion constraint 

when planning this path because it needs to ensure the c-bracket does not lose contact 

with the object. The direction of motion constraint is used in three places during the 

planning process. First it is used every time a tree is being extended towards a 

randomly generated configuration. It is also used during the connect process, when a 

tree is being extended towards the other. Lastly, it is used during path smoothing. 

V. Planning a disengage path 

Once a path has been calculated to move the object to its destination, the arm is 

either left as is or is moved away. If the arm is to be left as is then the Grasper is done 

planning. If the arm is to be moved away, a path is planned to move the arm from the 

last configuration of the move path to a predetermined rest configuration. The 

predetermined rest configuration is specified as part of the manipulation request. As 

with the grasp path-planning process, the disengage path is planned without the 

direction of motion constraint. The arm will not be moving an object so there is no 

need to pay attention to the direction in which the fingers are pointing. 

VI. Executing the manipulation request 

In steps II, IV and V (if the arm is to be disengaged from the object) paths were 
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planned and stored. The Grasper now executes these paths in the order in which they 

were planned 

o Grasp path – move the arm to grasp the object 

o Move path – move the object to its destination 

o Disengage path – move the arm away from the object 

If any of the first four steps fails, the Grasper will discontinue the planning process and 

report why it failed. 

 

11 Results 

To demonstrate the results of this research a simple randomized tic-tac-toe player was 

developed. The player randomly picks an empty position on the board to move the next 

game piece to. The player is setup as a state-machine, where each node has a specific task 

to perform.  

 

The first node, ReadBoard, locates the board (pinks lines) and the game pieces (blue 

 
Figure 25 – Hand/Eye playing tic-tac-toe 
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and green objects). The next node, ParseBoard, parses the lines and game pieces found in 

the ReadBoard node. It first determines the nine spaces that make up the game board; 

then it determines which positions have not been occupied. If the board is full, the 

ParseBoard node will report this and proceed to end the game. Otherwise, it randomly 

picks one of the unoccupied positions as the next position to play.  

The next node, SpawnNextPiece, was developed to place the next game piece in the 

robot‟s environment. This was necessary because it was very hard to arrange the un-

played game pieces in a way that the Hand/Eye robot could reach all of them. If the game 

pieces were well spread out, the last few un-played pieces would be out of reach of the 

arm, see figure 26. Placing all of the un-played game pieces within the arm‟s reach 

resulted in the pieces being so close that the Grasper would rarely find a path to grasp or 

move one.  

 

SpawnNextPiece places a green or blue game piece, depending on which color piece 

was last played, in a pre-determined position away from the board where the arm can 

 
Figure 26 – Game pieces to the far right will be hard to reach 
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easily grasp it. Once the next game piece has been placed, the node FindPieces makes the 

Hand/Eye look around for all of the game pieces in its environment.  

The last two nodes, MovePiece and SweepPieces, demonstrate how easy it is to 

program the Hand/Eye robot to manipulate an object. The MovePiece node uses the 

Grasper to move the next game piece onto the board, after the FindPieces node is 

complete. The SweepPieces node is invoked at the end of the game to clear the board.  

The MovePiece node sets up a Grasper request to move the next game piece onto the 

board. First, the target location on the board is set. 

 graspreq.targetLocation = targetLocationOnBoard; 

 

“targetLocationOnBoard” is the random position that was picked by the ParseBoard 

node. Next the object to be moved and the obstacles are set. 

 graspreq.object = targetObject; 

 graspreq.envObstacles = obstacles; 

 

The MovePiece node now sets two variables that will let the Grasper know to 

disengage the arm from the object after it has been placed and what configuration to 

move the arm to. 

 graspreq.restType = GrasperRequest::settleArm; 

 graspreq.armRestState = {0,0,0} // {shoulder, elbow, wrist} angles 

 

The MovePiece node also sets some RRT parameters: 

 numberOfStatesForRRT: the number of states the RRT should allocate to use 

 RRTTolerance: maximum distance between two states 

 RRTstepsize: max angular distance a joint can move per execution 

 RRTItrStepsize: max angular distance a joint can turn during an interpolation 

Once these variables are set, the Grasper proceeds to formulate a plan to grasp the 
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object, move the object onto the board, and then disengage the arm from the object. 

The SweepPieces node sets up a request for the Grasper to sweep all of the game 

pieces off of the board. This node does not set the graspreq.object variable because it is 

not going to move a particular object. Like the MovePiece node it does set the RRT 

parameters and the graspreq.envObstacles variable. The SweepPieces node also sets two 

additional variables that are necessary for a sweep operation. 

     graspreq.sweepStartPos = 90.0 * (M_PI/180); (shoulder angle; elbow angle = 0.0) 

        gaspreq.sweepDirection = -180.0 * (M_PI/180); 

 

The graspreq.sweepStartPos variable tells the Grasper where to start the sweep from 

and the graspreq.sweepDirection variable tells the Grasper what direction to sweep and 

how far to sweep. The wrist is automatically turned 45° in the direction of the sweep. 

This is to keep the objects from slipping away from the arm.  

 

After these variables have been set the Grasper proceeds to formulate a plan to move 

the arm to the graspreq.sweepStartPos configuration, while avoiding all obstacles in 

 
Figure 27 – Hand/Eye sweeping objects from left to right 
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graspreq.envObstacles. Then it swings the arm about the shoulder according to the 

graspreq.sweepDirection variable. 

 

12 Conclusions 

Object manipulations can vary in complexity from a very simple task of moving 

something from a start to a destination in a straight line, to moving an object around 

obstacles. Manipulations can also be as complex as requiring obstacles to be moved out 

of the way then moving the object to its destination. The latter can be broken down into a 

series of simpler manipulations with a little extra planning. However, no matter how 

simple the desired manipulation there is still a lot of work that has to be done. The object 

must be acquired then moved and in some cases the manipulator must also be moved 

away from the object. These three steps require path planning, collision detection and 

both forward and inverse kinematics. These steps must be planned and executed in a 

timely manner. The manipulation planner developed in this research does just that. 

The manipulation planner gives developers the ability to easily program a robot to 

manipulate an object with a three-link planar arm. It is very easy to use, requiring only a 

few lines of code to setup the planner and one line to execute the manipulation. The 

planner allows developers to focus on the big picture, when developing applications such 

as a tic-tac-toe player, instead of the low level details of how the robot will move the 

game pieces around. 

Persons studying path planning, collision detection and kinematics can use the planner 

as a tool to better understand these topics. Students can program a robot to perform 

simple manipulations and see the robots use the above-mentioned algorithms to perform 
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the manipulation. Tekkotsu is an open source software platform, which means the code 

can be read and modified to enhance one‟s comprehension of what and how the planner 

performs manipulations. 

 

13 Future Work 

Work on this project can be continued in many ways. Currently the Grasper only 

performs manipulations using the inside of the c-bracket. A more complex Grasper will 

be able to plan manipulations using the outer sides of the two fingers or any other part of 

the arm.  

In the Graspers current state, it is assumed that all manipulations, once planned, are 

performed without error. Preferably the Grasper should be able to detect if a desired 

manipulation was properly performed and if not it should automatically correct the 

mistake. This could be achieved either by verifying that the target object is at the target 

location or by tracking the movement of the object during the manipulation, ensuring that 

is always in the c-bracket. If either of these fails, the Grasper would locate the target 

object and re-plan the manipulation. 

Grasping an object is very difficult if it is too close to obstacles. Sometimes placing an 

object at a target location is impossible because one or two obstacles are in the way. 

Future work on the Grasper could enable it to move these obstacles aside, grasp or place 

the target object, then if need be move the obstacles back in place. 

Being able to accurately and efficiently move objects around with a three-link planar 

arm offers limitless capabilities for Tekkotsu developers. Eventually one might even be 

able to manipulate moving targets. 
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Appendix A: Source Code 
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CBracketGrasperPredicate.h 

 
#ifndef _CBRACKET_GRASPER_PREDICATE_ 

#define _CBRACKET_GRASPER_PREDICATE_ 

 

#include <Planners/RRT/RRTPlanner.h> 

#include <Motion/Kinematics.h> 

#include <Motion/PlanarThreeLinkArm.h> 
 

class CBracketGrasperPredicate : public RRTFunctorBase { 

 KinematicJoint *GripperFrameKJ, *tmpFK, *FKjoints[NumArmJoints]; 

 PlanarThreeLinkArm functorArm; 

 PlanarThreeLinkArm::Solutions functorSol; 

 fmat::Column<3> fromPT, toPT, goalPT; 

 float fromOri, toOri, dir; 

  

public:   

 CBracketGrasperPredicate(): GripperFrameKJ(), tmpFK(), functorArm(), functorSol(), fromPT(), 

toPT(), goalPT(), fromOri(), toOri(), dir() { 

#ifdef TGT_CALLIOPE 
  return; 

#endif 

   

#ifdef TGT_HAS_ARMS 

  GripperFrameKJ = kine->getKinematicJoint(GripperFrameOffset)->cloneBranch(); 

  if(GripperFrameKJ != NULL) { 

   tmpFK = GripperFrameKJ->getRoot(); 

   tmpFK->buildChildMap(FKjoints, ArmOffset, NumArmJoints); 

  } 

#endif 

 } 
  

 ~CBracketGrasperPredicate() { delete GripperFrameKJ->getRoot(); } 

  

 virtual bool operator()(RRTState* from,  

       RRTState* to,  

       const RRTState* goal,  

       const KinematicJoint* baseFrame,  

       const KinematicJoint* effectorFrame,  

       RRTStateVector& vec,  

       RRTPlanner& planner,  

       bool forward,  
       std::vector<PlannerObstacle*> obstacles,  

       bool postProcess) { 

  const float range = 40 * (M_PI/180); // The most the c-bracket can turn without loosing 

the object 

  

  fromPT = gripperPosition(from); 

  toPT = gripperPosition(to); 

  goalPT = gripperPosition(goal); 

  fromOri = stateOrien(from); 

  toOri = stateOrien(to); 

  float aDist, nOri; 

  dir = (forward) ? atan2(toPT[1]-fromPT[1], toPT[0]-fromPT[0]) : atan2(fromPT[1]-
toPT[1], fromPT[0]-toPT[0]); 
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  aDist = (forward) ? angDist(fromOri, dir) : angDist(toOri, dir); 

  if( aDist > range ) { 

   nOri = newOri(fromPT, goalPT, fromOri); 

   functorSol = functorArm.invKin3LinkRelaxPhi(fromPT[0], fromPT[1], nOri); 

   int solNo = ( functorSol.valid ) ? (( functorSol.noSols == 1 ) ? (( 

signof(functorSol.angles(0,1)) == signof(from->vec[1]) ) ? 0 : -1) : (( signof(functorSol.angles(0,1)) == 
signof(from->vec[1]) ) ? 0 : 1)) : -1; 

   if(solNo == -1) { return false; } 

   for(unsigned j = 0; j < NumArmJoints; j++) { to->vec[j] = 

functorSol.angles(solNo,j); } 

   if( planner.hasCollisions(to) ) { return false; } 

  } 

  to->parent = from; 

  from->addChild(to); 

  return ( to->distFrom(goal) < from->distFrom(goal) ) ? true : false; 

 } 

  

 int signof(float a) { return (a == 0.0) ? 1 : (a < 0.0 ? -1 : 1); } 
  

 float newOri(fmat::Column<3>& from, fmat::Column<3>& to, float fOri) { 

  const float change = 5 * (M_PI/180); 

  float diff = fOri - atan2(to[1]-from[1], to[0]-from[0]); 

  return AngSignPi( fOri + (fabs(diff) < M_PI ? 1 : -1) * ((diff < 0) ? 1 : -1) * change); 

 } 

  

 fmat::Column<3> gripperPosition(const RRTState* FKstate) { 

  for(unsigned int j = 0; j < NumArmJoints; j++)   

   FKjoints[j]->setQ(FKstate->vec[j]);  

  return GripperFrameKJ->getWorldPosition(); 
 } 

  

 fmat::Column<3> gripperPosition(const RRTStateDef FKstate) { 

  for(unsigned int j = 0; j < NumArmJoints; j++)  

   FKjoints[j]->setQ(FKstate[j]);  

  return GripperFrameKJ->getWorldPosition(); 

 } 

  

 float stateOrien(const RRTState* FKstate) { 

  float ori = 0.0; 

  for(unsigned int j = 0; j < NumArmJoints; j++) 

   ori += FKstate->vec[j];  
  return AngSignPi(ori); 

 } 

  

 static float angDist(float a1, float a2) { 

  float angle = fmod((float)fabs(a1 - a2),(float)(2*M_PI)); 

  return ( angle > M_PI ) ? (2*M_PI) - angle : angle; 

 } 

  

private: 

 CBracketGrasperPredicate& operator=(const CBracketGrasperPredicate &mp); 

 CBracketGrasperPredicate(const CBracketGrasperPredicate& mp); 
}; 

 

#endif 
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RandomTictactoe.h.fsm 

 
#include "Behaviors/StateMachine.h" 

#include "Wireless/netstream.h" 

 

using namespace std; 

using namespace DualCoding; 

 
typedef DualCoding::Shape<DualCoding::LineData> ShLine; 

typedef std::vector< ShLine > LineVec; 

typedef std::vector< DualCoding::Shape<DualCoding::EllipseData> > EllipseVec; 

typedef std::vector< DualCoding::Sketch<bool> > SkBoolVec; 

 

static int nextPosition = -1; 

 

#nodeclass RandomTictactoe : VisualRoutinesStateNode 

 

 #nodeclass WhoGoesFirst : StateNode 

  #nodemethod doStart 

   std::cout << "\nType yes or no in the 'Send Input' field, then hit Enter...\n" << 
std::endl; 

   erouter->addListener(this,EventBase::textmsgEGID);  // and text message events 

  #endnodemethod 

  #nodemethod doEvent 

   switch(event->getGeneratorID()) { 

    case EventBase::textmsgEGID: { 

     const TextMsgEvent *txtev = dynamic_cast<const 

TextMsgEvent*>(event); 

     if (txtev->getText() == "yes") { 

      postStateCompletion(); } 

     else { 
      postStateFailure(); } 

     break;}; 

 

    default: 

     std::cout << "Unexpected event: " << event->getDescription() 

<< std::endl; 

   } 

  #endnodemethod 

 #endnodeclass 

 

 #nodeclass ReadBoard : MapBuilderNode($,MapBuilderRequest::worldMap) : doStart 
  NEW_SHAPE(gazePt, PointData, new PointData(localShS, Point(230,-

230,30,egocentric))); 

  mapreq.searchArea = gazePt; 

  mapreq.addObjectColor(lineDataType, "pink"); 

  mapreq.addObjectColor(ellipseDataType, "blue"); 

  mapreq.addObjectColor(ellipseDataType, "green"); 

  mapreq.addOccluderColor(ellipseDataType, "blue"); 

  mapreq.addOccluderColor(ellipseDataType, "green"); 

  mapreq.groundPlaneAssumption = MapBuilderRequest::custom; 

  mapreq.customGroundPlane = PlaneEquation(0,0,1,30); 

  mapreq.motionSettleTime = 1000; 

  mapreq.rawY = true; 
  mapreq.maxDist = 2000; // millimeters 
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 #endnodeclass 

 

 #nodeclass ParseBoard : StateNode 

  #nodemethod doStart 

   LineVec lines = parseLines(); 

   if(lines.size() < 4) 
    { postStateFailure(); return; } 

   SkBoolVec squares = parseBoundaries(lines[0], lines[1], lines[2], lines[3]); 

   if(squares.size() < 9) 

    { postStateFailure(); return; } 

   vector<int> positions = parsePieces(squares); 

   vector<int> availablePositions = convertBoard(positions); 

   if(availablePositions.size() == 0) { 

    std::cout << "The board is full!" << std::endl; 

    postStateFailure(); 

    return; } 

   srand(time(NULL)); 

   nextPosition = availablePositions[rand() % availablePositions.size()]; 
   postStateCompletion(); 

  #endnodemethod 

   LineVec parseLines(); 

   SkBoolVec parseBoundaries(const ShLine& topLine, const ShLine& 

bottomLine, const ShLine& leftLine, const ShLine& rightLine); 

   SkBoolVec constructSquares(const ShLine& topLine, const ShLine& 

bottomLine, const ShLine& leftLine, const ShLine& rightLine, const ShLine& topBoundary, const 

ShLine& bottomBoundary, const ShLine& leftBoundary, const ShLine& rightBoundary); 

   vector<int> parsePieces(const SkBoolVec& squares); 

   vector<int> convertBoard(vector<int> positions); 

 #endnodeclass 
  

 #nodeclass SpawnNextPiece(string color) : StateNode : doStart 

  int x_coord[] = { 336, 280, 230, 280, 230, 175, 230, 175, 124}; 

  int y_coord[] = {-230,-280,-336,-175,-230,-280,-125,-175,-230}; 

  std::cout << "Move the " << color << " piece to position {" << x_coord[nextPosition] << 

"," << y_coord[nextPosition] << "}" << std::endl; 

  static int id = 1; 

  char buf[22]; 

  ionetstream mirage; 

  if(!mirage.open("localhost",19785u)) { 

   std::cerr << "Connection to mirage refused" << std::endl; 

   postStateFailure(); 
   return; 

  }  

  plist::Dictionary msg; 

  if(color == "green") { 

   sprintf(buf, "GreenEggMarker%d", id);  

   msg.addValue("ID", buf); 

  } 

  else { 

   sprintf(buf, "BlueEggMarker%d", id); 

   msg.addValue("ID", buf); 

  } 
  id++; 

  msg.addValue("Persist",true); // want points to stick around in Mirage 

  KinematicJoint nextPiece; 

  plist::ArrayOf<plist::Primitive<float> > location(3,0);  
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  fmat::Column<3> pos = fmat::pack(200,200,12.5); 

  pos.exportTo(location); 

  msg.addEntry("Location", location); 

  nextPiece.mass = 20; 

  nextPiece.model = "CollisionModel"; 

  nextPiece.material = (color=="green") ? "Green" : "Blue"; 
  nextPiece.collisionModel = "Cylinder"; 

  nextPiece.collisionModelScale = fmat::pack(37,37,30); 

  nextPiece.centerOfMass = fmat::pack(0,0,-20); 

  msg.addEntry("Model", new KinematicJointSaver(nextPiece)); 

  mirage << "<messages>\n"; 

  msg.saveStream(mirage,true); 

  mirage << "</messages>"; 

  postStateCompletion(); 

 #endnodeclass 

 

 #nodeclass FindPieces : MapBuilderNode($,MapBuilderRequest::worldMap) : doStart 

  mapreq.addObjectColor(ellipseDataType, "blue"); 
  mapreq.addObjectColor(ellipseDataType, "green"); 

  const vector<Point> gazePts = Lookout::groundSearchPoints(); 

  NEW_SHAPE(gazePoly, PolygonData, new PolygonData(worldShS, gazePts, true)); 

  mapreq.searchArea = gazePoly; 

  mapreq.groundPlaneAssumption = MapBuilderRequest::custom; 

  mapreq.customGroundPlane = PlaneEquation(0,0,1,30); 

  mapreq.motionSettleTime = 1000; 

 #endnodeclass 

  

 #nodeclass MovePiece : GrasperNode($,GrasperRequest::moveTo) : doStart 

  int x_coord[] = { 336, 280, 230, 280, 230, 175, 230, 175, 124}; 
  int y_coord[] = {-230,-280,-336,-175,-230,-280,-125,-175,-230}; 

  NEW_SHAPE(target, PointData, new PointData(worldShS, 

DualCoding::Point(x_coord[nextPosition], y_coord[nextPosition], 30, egocentric))); 

  graspreq.targetLocation = target; 

  SHAPEROOTVEC_ITERATE(worldShS, s) 

  if (s->isType(ellipseDataType)) { 

   if (s->getCentroid().coordY() > 0) 

    graspreq.object = s; 

   else 

    graspreq.envObstacles.push_back(s); 

  } 

  END_ITERATE; 
  graspreq.restType = GrasperRequest::settleArm; 

  graspreq.RRTItrStepsize = 0.5*M_PI/180.0; 

  graspreq.numberOfStatesForRRT = 100000; 

  graspreq.RRTstepsize = 0.5*M_PI/180.0; 

  graspreq.maxRRTIterations = 100000; 

  graspreq.RRTTolerance = 0.01f; 

  graspreq.armRestState = 0.0; 

 #endnodeclass 

     

 #nodeclass SweepPieces : GrasperNode($,GrasperRequest::sweep) : doStart 

  SHAPEROOTVEC_ITERATE(worldShS, s) 
   if (s->isType(ellipseDataType)) 

    graspreq.envObstacles.push_back(s); 

  END_ITERATE; 

  graspreq.restType = GrasperRequest::settleArm; 
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  graspreq.RRTItrStepsize = 0.5*M_PI/180.0; 

  graspreq.numberOfStatesForRRT = 100000; 

  graspreq.RRTstepsize = 0.5*M_PI/180.0; 

  graspreq.maxRRTIterations = 100000; 

  graspreq.RRTTolerance = 0.01f; 

  graspreq.armRestState = 0.0; 
  graspreq.sweepStartPos = 90.0 * (M_PI/180); 

  graspreq.sweepDirection = -180.0 * (M_PI/180); 

 #endnodeclass 

  

 #nodemethod setup 

  #statemachine 

   startnode: SpeechNode("Should blue play first?") =C=> wgf 

   wgf: WhoGoesFirst =C=> player1 

   wgf =F=> player2 

   player1: ReadBoard =MAP=> p1pb 

   player2: ReadBoard =MAP=> p2pb 

   p1pb: ParseBoard =C=> SpawnNextPiece($,"blue") =C=> FindPieces =MAP=> 
player1Move 

   player1Move: MovePiece 

   player1Move =GRASP(noError)=> SpeechNode("Next move.") =C=> player2 

   player1Move =GRASP(someError)=> SpeechNode("Sorry! I cannot move the 

blue piece.") =C=> sweep 

   p2pb: ParseBoard =C=> SpawnNextPiece($,"green") =C=> FindPieces 

=MAP=> player2Move 

   player2Move: MovePiece 

   player2Move =GRASP(noError)=> SpeechNode("Next move.") =C=> player1 

   player2Move =GRASP(someError)=> SpeechNode("Sorry! I cannot move the 

green piece.") =C=> sweep 
   p1pb =F=> SpeechNode("Sorry, I could not parse the board.") 

   p2pb =F=> SpeechNode("Sorry, I could not parse the board.") 

   sweep: SweepPieces =GRASP(noError)=> SpeechNode("Please restart me!") 

  #endstatemachine 

 #endnodemethod 

#endnodeclass 
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RandomTictactoe.cc 

 
#include "RandomTictactoe.h" 

 

LineVec RandomTictactoe::ParseBoard::parseLines() { 

 LineVec boardLines; 

 // 1. sort by length 

 LineVec lines=select_type<LineData>(camShS); 
 lines = stable_sort(lines,not2(LineData::LengthLessThan())); 

 if ( lines.size() < 4 ) { 

 cout << "Found " << lines.size() << " lines in the image; needed 4." << endl; 

 return boardLines; 

 } 

 // 2. Find the top and bottom horizontal lines 

 Shape<LineData> topLine, bottomLine; 

 for(LineVec::const_iterator ln1=lines.begin(); ln1!=lines.end(); ++ln1) { 

  if ( LineData::IsHorizontal()(*ln1) ) { 

   for(LineVec::const_iterator ln2=ln1+1; ln2!=lines.end(); ++ln2) { 

    if ( LineData::ParallelTest()(*ln1,*ln2) ) { 

     topLine = IsAbove()(*ln1,*ln2) ? *ln1 : *ln2; 
     bottomLine = IsAbove()(*ln1,*ln2) ? *ln2 : *ln1; 

     break; 

    } 

   } 

  } 

  if ( bottomLine.isValid() ) 

   break; 

 } 

 if ( ! bottomLine.isValid() ) { 

  cout << "Couldn't find top or bottom line" << endl; 

  return boardLines; 
 } 

 topLine->V("topLine"); 

 bottomLine->V("bottomLine"); 

 // 3. Find the left and right sort-of-vertical lines 

 Shape<LineData> leftLine, rightLine; 

 for(LineVec::const_iterator ln1=lines.begin(); ln1!=lines.end(); ++ln1) { 

  if ( !LineData::ParallelTest()(topLine,*ln1) ) { 

   for(LineVec::const_iterator ln2=ln1+1; ln2!=lines.end(); ++ln2) { 

    if ( ! LineData::ParallelTest()(topLine,*ln2) ) { 

     leftLine = IsLeftOf()(*ln1,*ln2) ? *ln1 : *ln2; 

     rightLine = IsLeftOf()(*ln1,*ln2) ? *ln2 : *ln1; 
     break; 

    } 

   } 

  } 

  if ( rightLine.isValid() ) 

   break; 

 } 

 if ( ! rightLine.isValid() ) { 

  cout << "Couldn't find left or right line" << endl; 

  return boardLines; 

 } 

 leftLine->V("leftLine"); 
 rightLine->V("rightLine"); 
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 // return lines in specified order 

 boardLines.push_back(topLine); 

 boardLines.push_back(bottomLine); 

 boardLines.push_back(leftLine); 

 boardLines.push_back(rightLine); 

 return boardLines; 
} 

 

SkBoolVec RandomTictactoe::ParseBoard::parseBoundaries(const ShLine& topLine, const ShLine& 

bottomLine, const ShLine& leftLine, const ShLine& rightLine) { 

 // Construct board boundary lines 

 Point tl = topLine->leftPt(); 

 Point tr = topLine->rightPt(); 

 Point bl = bottomLine->leftPt(); 

 Point br = bottomLine->rightPt(); 

 Point lt = leftLine->topPt(); 

 Point lb = leftLine->bottomPt(); 

 Point rt = rightLine->topPt(); 
 Point rb = rightLine->bottomPt(); 

 NEW_SHAPE(leftBoundary, LineData, 

     new LineData(camShS, leftMost(tl,bl), leftLine->getOrientation())); 

 NEW_SHAPE(rightBoundary, LineData, 

     new LineData(camShS, rightMost(tr,br), rightLine->getOrientation())); 

 NEW_SHAPE(topBoundary, LineData, 

     new LineData(camShS, topMost(lt,rt), topLine->getOrientation())); 

 NEW_SHAPE(bottomBoundary, LineData, 

     new LineData(camShS, bottomMost(lb,rb), bottomLine->getOrientation())); 

 return 

constructSquares(topLine,bottomLine,leftLine,rightLine,topBoundary,bottomBoundary,leftBoundary,right
Boundary); 

} 

 

SkBoolVec RandomTictactoe::ParseBoard::constructSquares(const ShLine& topLine, const ShLine& 

bottomLine, const ShLine& leftLine, const ShLine& rightLine, const ShLine& topBoundary, const 

ShLine& bottomBoundary, const ShLine& leftBoundary, const ShLine& rightBoundary) { 

 //include the border itself for better robustness 

 NEW_SKETCH(board, bool, !( 

         visops::leftHalfPlane(leftBoundary) | 

         visops::rightHalfPlane(rightBoundary) | 

         visops::topHalfPlane(topBoundary) | 

         visops::bottomHalfPlane(bottomBoundary) 
         )); 

  

 // Construct regions for board rows and columns 

 NEW_SKETCH(topRow, bool, visops::topHalfPlane(topLine) & board); 

 NEW_SKETCH(bottomRow, bool, visops::bottomHalfPlane(bottomLine) & board); 

 NEW_SKETCH(midRow, bool, ! (topRow | bottomRow) & board); 

  

 NEW_SKETCH(leftCol, bool, visops::leftHalfPlane(leftLine) & board); 

 NEW_SKETCH(rightCol, bool, visops::rightHalfPlane(rightLine) & board); 

 NEW_SKETCH(midCol, bool, ! (leftCol | rightCol) & board); 

  
 // Construct regions for the 9 board squares by intersecting rows and columns 

 SkBoolVec squares(9); 

 for (int i=0; i<3; i++) { 

  squares[i].bind(visops::copy(topRow)); 
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  squares[i+3].bind(visops::copy(midRow)); 

  squares[i+6].bind(visops::copy(bottomRow)); 

 } 

 for (int i=0; i<3; i++) { 

  squares[i*3] &= leftCol; 

  squares[i*3+1] &= midCol; 
  squares[i*3+2] &= rightCol; 

 }  

 return squares; 

} 

 

vector<int> RandomTictactoe::ParseBoard::parsePieces(const SkBoolVec& squares) { 

 // Find the game piece bottoms 

 NEW_SHAPEVEC(ellipses, EllipseData, select_type<EllipseData>(camShS)); 

 NEW_SHAPEVEC(x_pieces, EllipseData, subset(ellipses, IsColor("blue"))); 

 NEW_SHAPEVEC(o_pieces, EllipseData, subset(ellipses, IsColor("green"))); 

 NEW_SKETCH(x_render, bool, visops::zeros(camSkS)); 

 NEW_SKETCH(o_render, bool, visops::zeros(camSkS)); 
 DO_SHAPEVEC(x_pieces, EllipseData, piece, { 

  x_render |= piece->getRendering();}); 

 DO_SHAPEVEC(o_pieces, EllipseData, piece, { 

  o_render |= piece->getRendering();}); 

 NEW_SKETCH(x_bottoms, bool, x_render & ! x_render[*camSkS.idxS]); 

 NEW_SKETCH(o_bottoms, bool, o_render & ! o_render[*camSkS.idxS]); 

 int minBottom = 2; //!< minimum area to consider for a piece bottom (noise filter) 

 x_bottoms = visops::areacc(x_bottoms)>minBottom; 

 o_bottoms = visops::areacc(o_bottoms)>minBottom; 

  

 // Intersect piece bottoms with board regions to determine occupancy of each square 
 int xIdx = ProjectInterface::getColorIndex("blue"); 

 int oIdx = ProjectInterface::getColorIndex("green"); 

 vector<int> squareValues(9,0); 

 for (int i=0; i<9; i++) 

  if ( ! ((squares[i] & x_bottoms)->empty()) ) 

   squareValues[i] = xIdx; 

   else if ( ! ((squares[i] & o_bottoms)->empty()) ) 

    squareValues[i] = oIdx; 

    return squareValues; 

} 

 

vector<int> RandomTictactoe::ParseBoard::convertBoard(vector<int> positions) { 
 vector<int> availablePositions; 

 for (unsigned int a = 0; a < positions.size(); a++) { 

  if ((positions[a] == 0)) { 

   //std::cout << "Position " << a+1 << " is unoccupied." << std::endl; 

   availablePositions.push_back(a); 

  } 

 } 

 return availablePositions; 

} 

 

 

 


