next up previous contents
Next: dTdqi Up: The Robot and mRobot Previous: kine   Contents

Subsections

kine_pd

Syntax

ReturnMatrix kine_pd(const int ref=0);
void kine_pd(Matrix & Rot, ColumnVector & pos, 
             ColumnVector & pos_dot, const int ref=0);

Description

The forward kinematic model is provided by implementing the following recursion (similar to kine):
$\displaystyle {}^0 \mbox{\boldmath$ R $}_i$ $\textstyle =$ $\displaystyle {}^0 \mbox{\boldmath$ R $}_{i-1} {}^{i-1}\mbox{\boldmath$ R $}_i$ (2.58)
$\displaystyle {}^0 \mbox{\boldmath$ p $}_i$ $\textstyle =$ $\displaystyle {}^0 \mbox{\boldmath$ p $}_{i-1} + {}^0 \mbox{\boldmath$ R $}_{i-1} \mbox{\boldmath$ p $}_i$ (2.59)


$\displaystyle \begin{array}{cc}
{}^0 \mbox{\boldmath$ \dot{p} $}_i = {}^0 \mbox...
...-1} \times \mbox{\boldmath$ p $}_i) & \textrm{modified DH notation}
\end{array}$     (2.60)

where
$\displaystyle {}^0 \mbox{\boldmath$ T $}_i$ $\textstyle =$ $\displaystyle \left[\begin{array}{cc}
{}^0 \mbox{\boldmath$ R $}_{i} & {}^0 \mbox{\boldmath$ p $}_i \\
0 & 1 \end{array}\right]$ (2.61)

Return Value

Matrix or None (in this case Rot, pos pos_dot are modified on output)



Richard Gourdeau 2004-07-06