next up previous contents
Next: trans Up: 3D homogeneous transforms Previous: rpy   Contents

Subsections

rotx, roty, rotz

Syntax

ReturnMatrix rotx(const Real alpha);
ReturnMatrix roty(const Real beta);
ReturnMatrix rotz(const Real gamma);

Description

These functions return the elementary rotation matrices:
$\displaystyle \mbox{\boldmath$ Rot $}(x,\alpha)$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & - \...
... & 0 \\
0 & \sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right]$ (2.12)
$\displaystyle \mbox{\boldmath$ Rot $}(y,\beta)$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}
\cos \beta & 0 & \sin \beta & 0\\
0 & ...
... & 0 \\
- \sin \beta & 0 & \cos \beta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]$ (2.13)
$\displaystyle \mbox{\boldmath$ Rot $}(z,\gamma)$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}
\cos \gamma & - \sin \gamma & 0 & 0  ...
...ma & \cos \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]$ (2.14)

Return Value

Matrix



Richard Gourdeau 2004-07-06